In this tutorial, we’ll try to understand how to plot a quiver plot in Python with the help of some examples.
What is a Quiver plot?
A quiver plot is basically a type of 2D plot which shows vector lines as arrows. These types of plots are used by Electrical engineers to visualize electrical potential and show stress gradients in Mechanical engineering.
We can plot a quiver plot in Python using axes.quiver
method in matplotlib.
Quiver Plot using matpltolib.Axes.quiver()
method
We can plot a Quiver plot in Python using the Axes.quiver
method within the matplotlib module. The following is the syntax –
Basic Syntax:
axes.quiver([x, y], u, v, [c], **kwargs)
Parameters:
- x: 1D or 2D array, sequence. The x coordinates of the arrow locations
- y: 1D or 2D array, sequence. The y coordinates of the arrow locations
- u: 1D or 2D array, sequence. The x components of the arrow vectors
- v: 1D or 2D array, sequence. The y components of the arrow vectors
- c: 1D or 2D array, sequence. The arrow colors
For more details, about the parameters, refer this.
Now let us try to understand the above method using some examples.
Introductory ⭐
- Harvard University Data Science: Learn R Basics for Data Science
- Standford University Data Science: Introduction to Machine Learning
- UC Davis Data Science: Learn SQL Basics for Data Science
- IBM Data Science: Professional Certificate in Data Science
- IBM Data Analysis: Professional Certificate in Data Analytics
- Google Data Analysis: Professional Certificate in Data Analytics
- IBM Data Science: Professional Certificate in Python Data Science
- IBM Data Engineering Fundamentals: Python Basics for Data Science
Intermediate ⭐⭐⭐
- Harvard University Learning Python for Data Science: Introduction to Data Science with Python
- Harvard University Computer Science Courses: Using Python for Research
- IBM Python Data Science: Visualizing Data with Python
- DeepLearning.AI Data Science and Machine Learning: Deep Learning Specialization
Advanced ⭐⭐⭐⭐⭐
- UC San Diego Data Science: Python for Data Science
- UC San Diego Data Science: Probability and Statistics in Data Science using Python
- Google Data Analysis: Professional Certificate in Advanced Data Analytics
- MIT Statistics and Data Science: Machine Learning with Python - from Linear Models to Deep Learning
- MIT Statistics and Data Science: MicroMasters® Program in Statistics and Data Science
🔎 Find Data Science Programs 👨💻 111,889 already enrolled
Disclaimer: Data Science Parichay is reader supported. When you purchase a course through a link on this site, we may earn a small commission at no additional cost to you. Earned commissions help support this website and its team of writers.
Example 1 – Quiver plot with a single arrow
import matplotlib.pyplot as plt import numpy as np #generating the figure and axes fig, ax = plt.subplots() #defining the parameters x = 0 y = 0 u = 1 v = 1 #plotting the Quiver plot ax.quiver(x,y,u,v) plt.show()
Output:
The steps followed in the above examples are:
- Import the modules
- create a figure and axes using
pyplot.subplots
(refer this). - Define the parameters
- Plot the Quiver plot using
axes.quiver
method (refer this).
Example 2 – Quiver plot with two arrows
import matplotlib.pyplot as plt import numpy as np #generating the figure and axes fig, ax = plt.subplots() #defining the parameters x = [0, -0.5] y = [0, 0.5] u = [1, 0] v = [1, -1] #plotting the Quiver plot ax.quiver(x,y,u,v) plt.show()
Output:
The steps followed in the above examples are:
- Import the modules
- create a figure and axes using
pyplot.subplots
(refer this). - Define the parameters
- Plot the Quiver plot using
axes.quiver
method (refer this).
Example 3 – Quiver plot using a meshgrid
import matplotlib.pyplot as plt import numpy as np #generating the figure and axes fig, ax = plt.subplots() #defining the parameters X = np.arange(0,2.2,0.2) Y = np.arange(0,2.2,0.2) x, y = np.meshgrid(X, Y) u = np.cos(x)*y v = np.sin(y)*y #plotting the Quiver plot ax.quiver(x,y,u,v) plt.show()
Output:
The steps followed in the above examples are:
- Import the modules
- create a figure and axes using
pyplot.subplots
- Define the parameters
- Plot the Quiver plot using
axes.quiver
method.
Example 4 – Quiver plot along with gradient
import matplotlib.pyplot as plt import numpy as np #generating the figure and axes fig, ax = plt.subplots() #defining the parameters x = np.arange(-2,2.2,0.2) y = np.arange(-2,2.2,0.2) X, Y = np.meshgrid(x, y) z = X*np.exp(-X**2 -Y**2) dx, dy = np.gradient(z) #plotting the Quiver plot ax.quiver(x,y,dx,dy) plt.show()
Output:
The steps followed in the above examples are:
- Import the modules
- create a figure and axes using
pyplot.subplots
- Define the parameters
- generate X,Y values using
numpy.arange
generate a meshgrid usingnumpy.meshgrid
Then create the respective dx and dy values usingnumpy.gradient
(refer this)
- generate X,Y values using
- Plot the Quiver plot using
axes.quiver
method
Example 5 – Quiver plot along with four vortices
import matplotlib.pyplot as plt import numpy as np #generating the figure and axes fig, ax = plt.subplots() #defining the parameters x = np.arange(0,2*np.pi+2*np.pi/20,2*np.pi/20) y = np.arange(0,2*np.pi+2*np.pi/20,2*np.pi/20) X,Y = np.meshgrid(x,y) u = np.sin(X)*np.cos(Y) v = -np.cos(X)*np.sin(Y) #plotting the Quiver plot ax.quiver(x,y,u,v) plt.show()
Output:
The steps followed in the above examples are:
- Import the modules
- create a figure and axes using
pyplot.subplots
- Define the parameters
- generate X,Y values using
numpy.arange
generate a meshgrid usingnumpy.meshgrid
Then create the respective u and v values.
- generate X,Y values using
- Plot the Quiver plot using
axes.quiver
method
Example 5 – Quiver plot with colour
import matplotlib.pyplot as plt import numpy as np #generating the figure and axes fig, ax = plt.subplots() #defining the parameters x = np.arange(0,2.2,0.2) y = np.arange(0,2.2,0.2) X, Y = np.meshgrid(x, y) u = np.cos(X)*Y v = np.sin(y)*Y n = -2 color_array = np.sqrt(((v-n)/2)**2 + ((u-n)/2)**2) #plotting the Quiver plot ax.quiver(x,y,u,v, color_array, alpha=0.8) plt.show()
Output:
The steps followed in the above examples are:
- Import the modules
- create a figure and axes using
pyplot.subplots
- Define the parameters
- generate X,Y values using
numpy.arange
generate a meshgrid usingnumpy.meshgrid
Then create the respective u and v values
- generate X,Y values using
- Plot the Quiver plot using
axes.quiver
method by adding a color array for colours.
Example 7 – Quiver plot in 3D
import matplotlib.pyplot as plt import numpy as np #generating the figure and axes ax = plt.figure().add_subplot(projection='3d') #defining the parameters X = np.arange(-0.8, 1, 0.2) Y = np.arange(-0.8, 1, 0.2) Z = np.arange(-0.8, 1, 0.8) x, y, z = np.meshgrid(X,Y,Z) u = np.sin(np.pi * x) * np.cos(np.pi * y) * np.cos(np.pi * z) v = -np.cos(np.pi * x) * np.sin(np.pi * y) * np.cos(np.pi * z) w = (np.sqrt(2.0 / 3.0) * np.cos(np.pi * x) * np.cos(np.pi * y) * np.sin(np.pi * z)) #plotting the Quiver plot ax.quiver(x, y, z, u, v, w, length=0.1, normalize=True) plt.show()
Output:
The steps followed in the above examples are:
- Import the modules
- Create an axes using
pyplot.figure.add_subplot(projection='3d')
for the 3D plot. - Define the parameters
- generate X,Y,Z values using
numpy.arange
generate a meshgrid usingnumpy.meshgrid
Then create the respective u,v and w values.
- generate X,Y,Z values using
- Plot the Quiver plot using
axes.quiver
method
You might also be interested in –
- How to Create Heatmaps in Python?
- How to Plot Histograms by Group in Pandas
- How to Create a Contour Plot in Matplotlib
Subscribe to our newsletter for more informative guides and tutorials.
We do not spam and you can opt out any time.