In this tutorial, we’ll try to understand how to create multiple matplotlib plots in one figure with the help of some examples.
To create multiple plots in a single figure in matplotlib, you can use the matplotlib.pyplot.subplots()
function. This creates a grid of subplots in a single figure with each subplot represented by a different Axes object.
Using the matplotlib.pyplot.subplots()
function
Use pyplot.subplots
function to create multiple subplots within the same figure. Pass the details like the number of rows and the columns you want in the grid of subplots. It returns the figure object and an array of Axes objects for the subplots.
The following is the syntax –
Basic Syntax:
matplotlib.pyplot.subplots(nrows=1, ncols=1, *, sharex=False, sharey=False, squeeze=True, width_ratios=None, height_ratios=None, subplot_kw=None, gridspec_kw=None, **fig_kw)
Parameters:
- nrows, ncols: Number of rows/columns of the subplot grid.
For more details on the parameters, refer this.
Return:
Introductory ⭐
- Harvard University Data Science: Learn R Basics for Data Science
- Standford University Data Science: Introduction to Machine Learning
- UC Davis Data Science: Learn SQL Basics for Data Science
- IBM Data Science: Professional Certificate in Data Science
- IBM Data Analysis: Professional Certificate in Data Analytics
- Google Data Analysis: Professional Certificate in Data Analytics
- IBM Data Science: Professional Certificate in Python Data Science
- IBM Data Engineering Fundamentals: Python Basics for Data Science
Intermediate ⭐⭐⭐
- Harvard University Learning Python for Data Science: Introduction to Data Science with Python
- Harvard University Computer Science Courses: Using Python for Research
- IBM Python Data Science: Visualizing Data with Python
- DeepLearning.AI Data Science and Machine Learning: Deep Learning Specialization
Advanced ⭐⭐⭐⭐⭐
- UC San Diego Data Science: Python for Data Science
- UC San Diego Data Science: Probability and Statistics in Data Science using Python
- Google Data Analysis: Professional Certificate in Advanced Data Analytics
- MIT Statistics and Data Science: Machine Learning with Python - from Linear Models to Deep Learning
- MIT Statistics and Data Science: MicroMasters® Program in Statistics and Data Science
🔎 Find Data Science Programs 👨💻 111,889 already enrolled
Disclaimer: Data Science Parichay is reader supported. When you purchase a course through a link on this site, we may earn a small commission at no additional cost to you. Earned commissions help support this website and its team of writers.
- fig: Figure – the top-level container for all the plot components (in this case, the top-level container of the subplot grid.
- axes: Axes object or array of Axes object depending upon how many subplots you’re creating in the grid.
Let’s now look at some examples of creating a grid of subplots using the above syntax –
Example 1 – Plot subplots horizontally
If you want all the subplots to be horizontally aligned, create a subplot grid with only one row. For example, let’s create two subplots on a single row.
import matplotlib.pyplot as plt import numpy as np #defining x, y1, y2 values x = np.linspace(0,10,10) y1 = np.random.rand(10) y2 = np.random.rand(10) #creating subplots with only 1 row and 2 columns fig,axes = plt.subplots(nrows=1,ncols=2) #plotting each subplot axes[0].plot(x,y1) axes[1].plot(x,y2)
Output:
You can see that the resulting figure has the subplots aligned horizontally on a single row.
In the above example, we –
- Import the required modules.
- Define the values for x using the
numpy.linspace
function (refer this), and some random values for y1 & y2 usingnumpy.random.rand
(refer this). - Create a grid of subplots with 1 row and 2 columns using
matplotlib.pyplot.subplots()
. - Plot the x and y1 on the first subplot and x and y2 on the second subplot using the respective Axes object obtained in step 3.
Example 2 – Plot subplots vertically
Similarly, you can align the subplots vertically by creating a grid of subplots with only one column. Let’s take the same example as above but this time create a vertical grid of subplots.
import matplotlib.pyplot as plt import numpy as np #defining x, y1, y2 values x = np.linspace(0,10,10) y1 = np.random.rand(10) y2 = np.random.rand(10) #creating subplots with only 2 rows and 1 column fig,axes = plt.subplots(nrows=2,ncols=1) #plotting each subplot axes[0].plot(x,y1) axes[1].plot(x,y2)
Output:
In the above example, we –
- Import the required modules.
- Define the values for x using the
numpy.linspace
function (refer this), and some random values for y1 & y2 usingnumpy.random.rand
(refer this). - Create a grid of subplots with 2 rows and 1 column using
matplotlib.pyplot.subplots()
. This results in a vertical grid. - Plot the x and y1 on the first subplot and x and y2 on the second subplot using the respective Axes object obtained in step 3.
Example 3 – Create a grid of plots
We can also create a custom grid of subplots, for example – a 2×2 grid of the subplots.
import matplotlib.pyplot as plt import numpy as np #defining x, y1, y2 values x = np.linspace(0,10,10) y1 = np.random.rand(10) y2 = np.random.rand(10) y3 = np.random.rand(10) y4 = np.random.rand(10) #creating subplots with only 2 rows and 2 columns fig,axes = plt.subplots(nrows=2,ncols=2) #plotting each subplot axes[0][0].plot(x,y1) axes[0][1].plot(x,y2) axes[1][0].plot(x,y3) axes[1][1].plot(x,y4)
Output:
In the above example, we –
- Import the required modules.
- Define the values for x using the
numpy.linspace
function (refer this), and some random values for y1, y2, y3, and y4 usingnumpy.random.rand
(refer this). - Create a 2×2 grid of subplots with 2 rows and 2 columns using
matplotlib.pyplot.subplots()
. - Plot each of the four y variables on different subplots.
Example 4 – Add customizations to the subplots
Each subplot is a separate Axes object and you can use this Axes object to customize the subplot. For example, let’s change the line style for each of the subplots in the 2×2 grid.
import matplotlib.pyplot as plt import numpy as np #defining x, y1, y2 values x = np.linspace(0,10,10) y1 = np.random.rand(10) y2 = np.random.rand(10) y3 = np.random.rand(10) y4 = np.random.rand(10) #creating subplots with only 2 rows and 2 columns fig,axes = plt.subplots(nrows=2,ncols=2) #plotting each subplot axes[0][0].plot(x,y1,'-') axes[0][1].plot(x,y2,'r--o') axes[1][0].plot(x,y3,'g--o') axes[1][1].plot(x,y4,'b--o')
Output:
You can see that the subplots are styled differently.
We can similarly add titles to each subplot using the respective Axes object’s set_title()
function.
import matplotlib.pyplot as plt import numpy as np #defining x, y1, y2 values x = np.linspace(0,10,10) y1 = np.random.rand(10) y2 = np.random.rand(10) y3 = np.random.rand(10) y4 = np.random.rand(10) #creating subplots with only 2 rows and 2 columns fig,axes = plt.subplots(nrows=2,ncols=2) #plotting each subplot with custom title axes[0][0].plot(x,y1,'-') axes[0][0].set_title('Plot-1') axes[0][1].plot(x,y2,'r--o') axes[0][1].set_title('Plot-2') axes[1][0].plot(x,y3,'g--o') axes[1][0].set_title('Plot-3') axes[1][1].plot(x,y4,'b--o') axes[1][1].set_title('Plot-4')
Output:
Example 6 – Remove overlap between subplots with tight_layout()
You can use the matplotlib.pyplot.tight_layout()
function to remove the overlap between the Axes object. It attempts to resize the subplots such that there’s no overlap between them.
Let’s apply this to the above plot which has some overlap.
import matplotlib.pyplot as plt import numpy as np #defining x, y1, y2 values x = np.linspace(0,10,10) y1 = np.random.rand(10) y2 = np.random.rand(10) y3 = np.random.rand(10) y4 = np.random.rand(10) #creating subplots with only 2 rows and 2 columns fig,axes = plt.subplots(nrows=2,ncols=2) #plotting each subplot with custom title axes[0][0].plot(x,y1,'-') axes[0][0].set_title("Plot-1") axes[0][1].plot(x,y2,'r--o') axes[0][1].set_title("Plot-2") axes[1][0].plot(x,y3,'g--o') axes[1][0].set_title("Plot-3") axes[1][1].plot(x,y4,'b--o') axes[1][1].set_title("Plot-4") plt.tight_layout()
Output:
The subplots now do not have any overlap and are more readable.
You might also be interested in –
- How To Make a Bubble Plot in Python with Matplotlib?
- Matplotlib – Create a Plot with two Y Axes and shared X Axis
- Add Title to Each Subplot in Matplotlib
Subscribe to our newsletter for more informative guides and tutorials.
We do not spam and you can opt out any time.