In this tutorial, we will look at how to drop duplicate rows from a Pyspark dataframe with the help of some examples.
How to drop duplicate rows in Pyspark?

You can use the Pyspark dropDuplicates()
function to drop duplicate rows from a Pyspark dataframe. The following is the syntax –
# drop duplicates from dataframe df.dropDuplicates()
Apply the function on the dataframe you want to remove the duplicates from. It returns a Pyspark dataframe with the duplicate rows removed.
Examples
Let’s look at some examples of removing duplicate rows from a Pyspark dataframe. First, we’ll create a Pyspark dataframe that we will be using throughout this tutorial.
# import the pyspark module import pyspark # import the sparksession class from pyspark.sql from pyspark.sql import SparkSession # create an app from SparkSession class spark = SparkSession.builder.appName('datascience_parichay').getOrCreate() # data of competition participants data = [["Tim", "Germany", "A"], ["Max", "Germany", "A"], ["Viraj", "India", "A"], ["Emma", "USA", "B"], ["Emma", "USA", "B"], ["Jack", "USA", "B"], ["Max", "Germany", "A"], ["Max", "Germany", "A"]] # create a Pyspark dataframe using the above data df = spark.createDataFrame(data, ["Name", "Country", "Team"]) # display df.show()
Output:
+-----+-------+----+ | Name|Country|Team| +-----+-------+----+ | Tim|Germany| A| | Max|Germany| A| |Viraj| India| A| | Emma| USA| B| | Emma| USA| B| | Jack| USA| B| | Max|Germany| A| | Max|Germany| A| +-----+-------+----+
We now have a dataframe containing the name, country, and team information of some students participating in a case-study competition. Note that there are duplicate rows present in the data.
Drop duplicate rows from Pyspark dataframe
Let’s remove the duplicate rows from the above dataframe. For this, apply the Pyspark dropDuplicates()
function on the dataframe created above.
# drop duplicate rows df.dropDuplicates().show()
Output:
+-----+-------+----+ | Name|Country|Team| +-----+-------+----+ | Max|Germany| A| | Tim|Germany| A| | Emma| USA| B| |Viraj| India| A| | Jack| USA| B| +-----+-------+----+
You can see that the resulting dataframe does not have any duplicate rows. Note that the original dataframe is not modified yet. To modify the original dataframe, assign the resulting dataframe from the dropDuplicates()
function to the original dataframe variable.
# drop duplicate rows df = df.dropDuplicates() # display the dataframe df.show()
Output:
+-----+-------+----+ | Name|Country|Team| +-----+-------+----+ | Max|Germany| A| | Tim|Germany| A| | Emma| USA| B| |Viraj| India| A| | Jack| USA| B| +-----+-------+----+
The dataframe df
now doesn’t have any duplicate rows.
Use dropDuplicates()
to view distinct values in a Column
You can also use the Pyspark dropDuplicates()
function to view unique values in a Pyspark column. For example, let’s use this function to get the distinct values in the “Country” column of the dataframe above.
# distinct values in Country column df.select("Country").dropDuplicates().show()
Output:
+-------+ |Country| +-------+ |Germany| | India| | USA| +-------+
We get the unique values in the “Country” column – “Germany”, “India”, and “USA”. This use-case is similar to using the Pyspark distinct()
function.
You might also be interested in –
- Order PySpark DataFrame using orderBy()
- Display DataFrame in Pyspark with show()
- Filter PySpark DataFrame with where()
Subscribe to our newsletter for more informative guides and tutorials.
We do not spam and you can opt out any time.