In this tutorial, we will look at how to display a dataframe using the show() method in PySpark with the help of some examples.
How to display dataframe in Pyspark?
The show()
method in Pyspark is used to display the data from a dataframe in a tabular format. The following is the syntax –
df.show(n,vertical,truncate)
Here, df
is the dataframe you want to display. The show()
method takes the following parameters –
n
– The number of rows to displapy from the top.vertical
– Whether to display the dataframe data in a vertical format or not. This parameter isFalse
by default.truncate
– If set toTrue
, truncate strings longer than 20 chars by default. If set to a number greater than one, truncates long strings to lengthtruncate
and align cells right.
Examples
Let’s now look at some examples of using the above function to show a dataframe in Pyspark. First, let’s create a Pyspark dataframe that we will be using throughout this tutorial.
#import the pyspark module import pyspark # import the sparksession class from pyspark.sql from pyspark.sql import SparkSession # create an app from SparkSession class spark = SparkSession.builder.appName('datascience_parichay').getOrCreate() # books data as list of lists df = [[1, "php", "sravan", 234], [2, "sql", "chandra sekhar", 345], [3, "python", "harsha", 1200], [4, "R", "Rohith", 120], [5, "hadoop", "manasa", 2340] ] # create dataframe from the books data above by specifying the columns dataframe = spark.createDataFrame(df, ['Book_Id', 'Book_Name', 'Author', 'Price'])
We now have a dataframe containing book details.
Using show()
function with default parameters
Let’s display the dataframe created above using the show()
method without any parameters.
# display dataframe with default parameters dataframe.show()
Output:
Introductory ⭐
- Harvard University Data Science: Learn R Basics for Data Science
- Standford University Data Science: Introduction to Machine Learning
- UC Davis Data Science: Learn SQL Basics for Data Science
- IBM Data Science: Professional Certificate in Data Science
- IBM Data Analysis: Professional Certificate in Data Analytics
- Google Data Analysis: Professional Certificate in Data Analytics
- IBM Data Science: Professional Certificate in Python Data Science
- IBM Data Engineering Fundamentals: Python Basics for Data Science
Intermediate ⭐⭐⭐
- Harvard University Learning Python for Data Science: Introduction to Data Science with Python
- Harvard University Computer Science Courses: Using Python for Research
- IBM Python Data Science: Visualizing Data with Python
- DeepLearning.AI Data Science and Machine Learning: Deep Learning Specialization
Advanced ⭐⭐⭐⭐⭐
- UC San Diego Data Science: Python for Data Science
- UC San Diego Data Science: Probability and Statistics in Data Science using Python
- Google Data Analysis: Professional Certificate in Advanced Data Analytics
- MIT Statistics and Data Science: Machine Learning with Python - from Linear Models to Deep Learning
- MIT Statistics and Data Science: MicroMasters® Program in Statistics and Data Science
🔎 Find Data Science Programs 👨💻 111,889 already enrolled
Disclaimer: Data Science Parichay is reader supported. When you purchase a course through a link on this site, we may earn a small commission at no additional cost to you. Earned commissions help support this website and its team of writers.
+-------+---------+--------------+-----+ |Book_Id|Book_Name| Author|Price| +-------+---------+--------------+-----+ | 1| php| sravan| 234| | 2| sql|chandra sekhar| 345| | 3| python| harsha| 1200| | 4| R| Rohith| 120| | 5| hadoop| manasa| 2340| +-------+---------+--------------+-----+
The dataframe is displayed in tabular format.
Display top 3 rows
Let’s now display only the first three rows from the dataframe. For this, pass n=3
to the pyspark dataframe show()
function.
# display only top three rows dataframe.show(n=3)
Output:
+-------+---------+--------------+-----+ |Book_Id|Book_Name| Author|Price| +-------+---------+--------------+-----+ | 1| php| sravan| 234| | 2| sql|chandra sekhar| 345| | 3| python| harsha| 1200| +-------+---------+--------------+-----+ only showing top 3 rows
You can see only the top three rows are now displayed.
Display dataframe in vertical format
Let’s now display a dataframe in a vertical format. For this, pass vertical=True
to the show()
function.
# display dataframe in vertical format dataframe.show(vertical = True)
Output:
-RECORD 0------------------- Book_Id | 1 Book_Name | php Author | sravan Price | 234 -RECORD 1------------------- Book_Id | 2 Book_Name | sql Author | chandra sekhar Price | 345 -RECORD 2------------------- Book_Id | 3 Book_Name | python Author | harsha Price | 1200 -RECORD 3------------------- Book_Id | 4 Book_Name | R Author | Rohith Price | 120 -RECORD 4------------------- Book_Id | 5 Book_Name | hadoop Author | manasa Price | 2340
You can see that the dataframe records are displayed in vertical format.
Truncate longer strings in dataframe
In this example, we show the dataframe by truncating strings to a maximum length of two. For this, we pass truncate=2
to the show()
function.
# display dataframe with only first two characters of string dataframe.show(truncate=2)
Output:
+-------+---------+------+-----+ |Book_Id|Book_Name|Author|Price| +-------+---------+------+-----+ | 1| ph| sr| 23| | 2| sq| ch| 34| | 3| py| ha| 12| | 4| R| Ro| 12| | 5| ha| ma| 23| +-------+---------+------+-----+
The dataframe is displayed such that strings after length two are truncated.
You might also be interested in –
- Show all columns of Pandas DataFrame in Jupyter Notebook
- Pandas – Read only the first n rows of a CSV file
Subscribe to our newsletter for more informative guides and tutorials.
We do not spam and you can opt out any time.