In this tutorial, we will look at how to use the Pyspark collect()
function to get collect data from a Pyspark dataframe.
Collect data from Pyspark dataframe

You can use the collect()
function to collect data from a Pyspark dataframe as a list of Pyspark dataframe rows.
It does not take any parameters but if you want to collect only specific column(s) you can use it in combination with the Pyspark select()
function. It returns the dataframe records as a list of rows.
Examples
Let’s look at some examples of using the collect()
function in Pyspark. First, let’s create a Pyspark dataframe that we will be using throughout this tutorial.
#import the pyspark module import pyspark # import the sparksession class from pyspark.sql from pyspark.sql import SparkSession # create an app from SparkSession class spark = SparkSession.builder.appName('datascience_parichay').getOrCreate() # books data as list of lists df = [[1, "PHP", "Sravan", 250], [2, "SQL", "Chandra", 300], [3, "Python", "Harsha", 250], [4, "R", "Rohith", 1200], [5, "Hadoop", "Manasa", 700], ] # creating dataframe from books data dataframe = spark.createDataFrame(df, ['Book_Id', 'Book_Name', 'Author', 'Price']) # display the dataframe dataframe.show()
Output:
Highlighted programs for you
Flatiron School
Flatiron School
University of Maryland Global Campus
University of Maryland Global Campus
Creighton University
Creighton University
+-------+---------+-------+-----+ |Book_Id|Book_Name| Author|Price| +-------+---------+-------+-----+ | 1| PHP| Sravan| 250| | 2| SQL|Chandra| 300| | 3| Python| Harsha| 250| | 4| R| Rohith| 1200| | 5| Hadoop| Manasa| 700| +-------+---------+-------+-----+
We now have a dataframe with 5 rows and 4 columns containing information on some books.
Collect the entire data
Using the collect()
function with default parameters in Pyspark returns the entire dataframe records as a list of Row.
Let’s get all the records from the above dataframe by using collect()
function without any parameters.
# collect data from dataframe dataframe.collect()
Output:
[Row(Book_Id=1, Book_Name='PHP', Author='Sravan', Price=250), Row(Book_Id=2, Book_Name='SQL', Author='Chandra', Price=300), Row(Book_Id=3, Book_Name='Python', Author='Harsha', Price=250), Row(Book_Id=4, Book_Name='R', Author='Rohith', Price=1200), Row(Book_Id=5, Book_Name='Hadoop', Author='Manasa', Price=700)]
You can see that we get a list of rows from the collect()
method.
Collect data from particular column
You can use the Pyspark select()
function in combination with the collect()
function to collect data from a specific column. Pass the column name as an argument to the select()
function.
# collect data from Book_Name column dataframe.select("Book_Name").collect()
Output:
[Row(Book_Name='PHP'), Row(Book_Name='SQL'), Row(Book_Name='Python'), Row(Book_Name='R'), Row(Book_Name='Hadoop')]
Here, we pass “Book_Name” as an argument to the collect()
function.
Iterate over each row of Pyspark dataframe
You can also use the collect()
function to iterate over the Pyspark dataframe row by row. For example, let’s iterate over each row in the above dataframe and print it.
# iterate over rows in dataframe for r in dataframe.collect(): print(r)
Output:
Row(Book_Id=1, Book_Name='PHP', Author='Sravan', Price=250) Row(Book_Id=2, Book_Name='SQL', Author='Chandra', Price=300) Row(Book_Id=3, Book_Name='Python', Author='Harsha', Price=250) Row(Book_Id=4, Book_Name='R', Author='Rohith', Price=1200) Row(Book_Id=5, Book_Name='Hadoop', Author='Manasa', Price=700)
We get all the rows in the dataframe printed.
Since the Pyspark collect()
function results in a list of rows, you can access a particular row using its index. Additionally, you can also access a particular value in the row using its column header.
# get second row using its index print(dataframe.collect()[1]) #get Book_Name from second row print(dataframe.collect()[1]["Book_Name"])
Output:
Row(Book_Id=2, Book_Name='SQL', Author='Chandra', Price=300) SQL
Here we print the second row and the book name in the second row.
You might also be interested in –
Subscribe to our newsletter for more informative guides and tutorials.
We do not spam and you can opt out any time.