Standard deviation is a descriptive statistic used as a measure of the spread in the data. In this tutorial, we will look at how to get the standard deviation of a column in a Pyspark dataframe with the help of some examples.
How to get standard deviation for a Pyspark dataframe column?
You can use the stddev()
function from the pyspark.sql.functions
module to compute the standard deviation of a Pyspark column. The following is the syntax –
stddev("column_name")
Pass the column name as a parameter to the stddev()
function.
You can similarly use the stddev_samp()
function to get the sample standard deviation and the stddev_pop()
function to get the population standard deviation. Both the functions are available in the same pyspark.sql.functions
module.
Examples
Let’s look at some examples of computing standard deviation for column(s) in a Pyspark dataframe. First, let’s create a sample Pyspark dataframe that we will be using throughout this tutorial.
#import the pyspark module import pyspark # import the sparksession class from pyspark.sql from pyspark.sql import SparkSession # create an app from SparkSession class spark = SparkSession.builder.appName('datascience_parichay').getOrCreate() # books data as list of lists df = [[1, "PHP", "Sravan", 250, 454], [2, "SQL", "Chandra", 300, 320], [3, "Python", "Harsha", 250, 500], [4, "R", "Rohith", 1200, 310], [5, "Hadoop", "Manasa", 700, 270], ] # creating dataframe from books data dataframe = spark.createDataFrame(df, ['Book_Id', 'Book_Name', 'Author', 'Price', 'Pages']) # display the dataframe dataframe.show()
Output:
+-------+---------+-------+-----+-----+ |Book_Id|Book_Name| Author|Price|Pages| +-------+---------+-------+-----+-----+ | 1| PHP| Sravan| 250| 454| | 2| SQL|Chandra| 300| 320| | 3| Python| Harsha| 250| 500| | 4| R| Rohith| 1200| 310| | 5| Hadoop| Manasa| 700| 270| +-------+---------+-------+-----+-----+
We have a dataframe containing information on books like their author names, prices, pages, etc.
Standard deviation of a single column
Let’s compute the standard deviation for the “Price” column in the dataframe. To do so, you can use the stddev()
function in combination with the Pyspark select()
function.
Introductory ⭐
- Harvard University Data Science: Learn R Basics for Data Science
- Standford University Data Science: Introduction to Machine Learning
- UC Davis Data Science: Learn SQL Basics for Data Science
- IBM Data Science: Professional Certificate in Data Science
- IBM Data Analysis: Professional Certificate in Data Analytics
- Google Data Analysis: Professional Certificate in Data Analytics
- IBM Data Science: Professional Certificate in Python Data Science
- IBM Data Engineering Fundamentals: Python Basics for Data Science
Intermediate ⭐⭐⭐
- Harvard University Learning Python for Data Science: Introduction to Data Science with Python
- Harvard University Computer Science Courses: Using Python for Research
- IBM Python Data Science: Visualizing Data with Python
- DeepLearning.AI Data Science and Machine Learning: Deep Learning Specialization
Advanced ⭐⭐⭐⭐⭐
- UC San Diego Data Science: Python for Data Science
- UC San Diego Data Science: Probability and Statistics in Data Science using Python
- Google Data Analysis: Professional Certificate in Advanced Data Analytics
- MIT Statistics and Data Science: Machine Learning with Python - from Linear Models to Deep Learning
- MIT Statistics and Data Science: MicroMasters® Program in Statistics and Data Science
🔎 Find Data Science Programs 👨💻 111,889 already enrolled
Disclaimer: Data Science Parichay is reader supported. When you purchase a course through a link on this site, we may earn a small commission at no additional cost to you. Earned commissions help support this website and its team of writers.
from pyspark.sql.functions import stddev # standard deviation of the Price column dataframe.select(stddev("Price")).show()
Output:
+------------------+ |stddev_samp(Price)| +------------------+ | 414.427315702042| +------------------+
We get the standard deviation for the “Price” column. Note that the std_dev()
function gives the sample standard deviation.
Alternatively, you can use the Pyspark agg()
function to compute the std deviation for a column.
# standard deviation of the Price column dataframe.agg({'Price': 'stddev'}).show()
Output:
+----------------+ | stddev(Price)| +----------------+ |414.427315702042| +----------------+
We get the same result as above.
Let’s now use the stddev_samp()
and stddev_pop()
functions on the same column along with the stddev()
function to compare their results.
from pyspark.sql.functions import stddev, stddev_samp, stddev_pop # standard deviation of the Price column dataframe.select(stddev("Price"), stddev_samp("Price"), stddev_pop("Price")).show()
Output:
+------------------+------------------+-----------------+ |stddev_samp(Price)|stddev_samp(Price)|stddev_pop(Price)| +------------------+------------------+-----------------+ | 414.427315702042| 414.427315702042|370.6750598570128| +------------------+------------------+-----------------+
You can see that stddev()
and steddev_samp()
give the same result which is the sample standard deviation whereas the stddev_pop()
function gave the population standard deviation.
Standard deviation for more than one column
You can get the standard deviation for more than one column as well. Inside the select()
function, use a separate stddev()
function for each column you want to compute the std dev for.
Let’s compute the std dev for the “Price” and the “Pages” columns.
from pyspark.sql.functions import stddev # standard deviation of the Price and Pages columns dataframe.select(stddev("Price"), stddev("Pages")).show()
Output:
+------------------+------------------+ |stddev_samp(Price)|stddev_samp(Pages)| +------------------+------------------+ | 414.427315702042|100.06597823436296| +------------------+------------------+
We get the desired output.
You can also use the agg()
function to compute the std dev of multiple columns.
# standard deviation of the Price and Pages columns dataframe.agg({'Price': 'stddev', 'Pages': 'Stddev'}).show()
Output:
+------------------+----------------+ | stddev(Pages)| stddev(Price)| +------------------+----------------+ |100.06597823436296|414.427315702042| +------------------+----------------+
We get the same result as above.
You might also be interested in –
Subscribe to our newsletter for more informative guides and tutorials.
We do not spam and you can opt out any time.