In this tutorial, we will look at how to construct schema for a Pyspark dataframe with the help of Structype()
and StructField()
in Pyspark.
Pyspark Dataframe Schema
The schema for a dataframe describes the type of data present in the different columns of the dataframe. Let’s look at an example.
#import the pyspark module import pyspark # import the sparksession class from pyspark.sql from pyspark.sql import SparkSession # create an app from SparkSession class spark = SparkSession.builder.appName('datascience_parichay').getOrCreate() # books data as list of lists df = [[1, "PHP", "Sravan", 250], [2, "SQL", "Chandra", 300], [3, "Python", "Harsha", 250], [4, "R", "Rohith", 1200], [5, "Hadoop", "Manasa", 700], ] # creating dataframe from books data dataframe = spark.createDataFrame(df, ['Book_Id', 'Book_Name', 'Author', 'Price']) # display the dataframe schema dataframe.printSchema()
Output:
root |-- Book_Id: long (nullable = true) |-- Book_Name: string (nullable = true) |-- Author: string (nullable = true) |-- Price: long (nullable = true)
Here, we created a Pyspark dataframe without explicitly specifying its schema. We then printed out the schema in tree form with the help of the printSchema()
function.
You can see that the schema tells us about the column name and the type of data present in each column. In this case, it inferred the schema from the data itself. You can, however, specify your own schema for a dataframe.
Construct Schema for a DataFrame
You can construct schema for a dataframe in Pyspark with the help of the StructType()
and the StructField()
functions. This lets you specify the type of data that you want to store in each column of the dataframe.
StructField()
The StructField()
function present in the pyspark.sql.types
class lets you define the datatype for a particular column. Commonly used datatypes are IntegerType()
, LongType()
, StringType()
, FloatType()
, etc.
StructType()
The StructType()
function present in the pyspark.sql.types
class lets you define the datatype for a row. That is, using this you can determine the structure of the dataframe. You can think of it as an array or list of different StructField()
.
Introductory ⭐
- Harvard University Data Science: Learn R Basics for Data Science
- Standford University Data Science: Introduction to Machine Learning
- UC Davis Data Science: Learn SQL Basics for Data Science
- IBM Data Science: Professional Certificate in Data Science
- IBM Data Analysis: Professional Certificate in Data Analytics
- Google Data Analysis: Professional Certificate in Data Analytics
- IBM Data Science: Professional Certificate in Python Data Science
- IBM Data Engineering Fundamentals: Python Basics for Data Science
Intermediate ⭐⭐⭐
- Harvard University Learning Python for Data Science: Introduction to Data Science with Python
- Harvard University Computer Science Courses: Using Python for Research
- IBM Python Data Science: Visualizing Data with Python
- DeepLearning.AI Data Science and Machine Learning: Deep Learning Specialization
Advanced ⭐⭐⭐⭐⭐
- UC San Diego Data Science: Python for Data Science
- UC San Diego Data Science: Probability and Statistics in Data Science using Python
- Google Data Analysis: Professional Certificate in Advanced Data Analytics
- MIT Statistics and Data Science: Machine Learning with Python - from Linear Models to Deep Learning
- MIT Statistics and Data Science: MicroMasters® Program in Statistics and Data Science
🔎 Find Data Science Programs 👨💻 111,889 already enrolled
Disclaimer: Data Science Parichay is reader supported. When you purchase a course through a link on this site, we may earn a small commission at no additional cost to you. Earned commissions help support this website and its team of writers.
StructType()
can also be used to create nested columns in Pyspark dataframes.
You can use the .schema
attribute to see the actual schema (with StructType()
and StructField()
) of a Pyspark dataframe. Let’s see the schema for the above dataframe.
# dataframe schema print(dataframe.schema)
Output:
StructType(List(StructField(Book_Id,LongType,true),StructField(Book_Name,StringType,true),StructField(Author,StringType,true),StructField(Price,LongType,true)))
Examples
Let’s look at some examples of using the above methods to create schema for a dataframe in Pyspark.
We create the same dataframe as above but this time we explicitly specify our schema.
#import the pyspark module import pyspark # import the sparksession class from pyspark.sql from pyspark.sql import SparkSession # import types for building schema from pyspark.sql.types import StructType,StructField, StringType, IntegerType # create an app from SparkSession class spark = SparkSession.builder.appName('datascience_parichay').getOrCreate() # create dataframe schema schema = StructType([ StructField("Book_Id", IntegerType()), StructField("Book_Name", StringType()), StructField("Author", StringType()), StructField("Price", IntegerType()) ]) # books data as list of records # books data as list of lists df = [[1, "PHP", "Sravan", 250], [2, "SQL", "Chandra", 300], [3, "Python", "Harsha", 250], [4, "R", "Rohith", 1200], [5, "Hadoop", "Manasa", 700], ] # creating dataframe from schema dataframe = spark.createDataFrame(df, schema) # display the dataframe schema dataframe.printSchema()
Output:
root |-- Book_Id: integer (nullable = true) |-- Book_Name: string (nullable = true) |-- Author: string (nullable = true) |-- Price: integer (nullable = true)
You can see the resulting dataframe and its schema. Here the “Book_Id” and the “Price” columns are of type integer because the schema explicitly specifies them to be integer.
Let’s now use StructType()
to create a nested column. For example, we can create a nested column for the “Author” column with two sub-columns – “First Name” and “Last Name”.
#import the pyspark module import pyspark # import the sparksession class from pyspark.sql from pyspark.sql import SparkSession # import types for building schema from pyspark.sql.types import StructType,StructField, StringType, IntegerType # create an app from SparkSession class spark = SparkSession.builder.appName('datascience_parichay').getOrCreate() # create dataframe schema schema = StructType([ StructField("Book_Id", IntegerType()), StructField("Book_Name", StringType()), StructField("Author", StructType([ StructField("First Name", StringType()), StructField("Last Name", StringType())])), StructField("Price", IntegerType()) ]) # books data as list of records df = [[1, 'PHP', ['Sravan', 'Kumar'], 250], [2, 'SQL', ['Chandra', 'Sethi'], 300], [3, 'Python', ['Harsha', 'Patel'], 250], [4, 'R', ['Rohith', 'Samrat'], 1200], [5, 'Hadoop', ['Manasa', 'Gopal'], 700]] # creating dataframe from schema dataframe = spark.createDataFrame(df, schema) # display the dataframe dataframe.show()
Output:
+-------+---------+----------------+-----+ |Book_Id|Book_Name| Author|Price| +-------+---------+----------------+-----+ | 1| PHP| {Sravan, Kumar}| 250| | 2| SQL|{Chandra, Sethi}| 300| | 3| Python| {Harsha, Patel}| 250| | 4| R|{Rohith, Samrat}| 1200| | 5| Hadoop| {Manasa, Gopal}| 700| +-------+---------+----------------+-----+
Let’s now display the schema for this dataframe.
# display the dataframe schema dataframe.printSchema()
Output:
root |-- Book_Id: integer (nullable = true) |-- Book_Name: string (nullable = true) |-- Author: struct (nullable = true) | |-- First Name: string (nullable = true) | |-- Last Name: string (nullable = true) |-- Price: integer (nullable = true)
The schema shows the nested column structure present in the dataframe.
You might also be interested in –
Subscribe to our newsletter for more informative guides and tutorials.
We do not spam and you can opt out any time.