In this tutorial, we will look at how to check if a numpy array is 1d (one-dimensional), 2-d (two-dimensional), or a higher-dimensional array with some examples.

## How to get the dimensions of a numpy array?

You can use a numpy array’s `ndim`

property to get the number of dimensions in the array. For a 1d array, it returns 1, for a 2d array it returns 2, and so on.

The following is the syntax –

# get the dimensions of a numpy array df.ndim

Alternatively, you can also use the `shape`

property of a numpy array to determine the dimensionality of an array. It returns a tuple with each element representing the length of the respective dimension in the array.

Let’s now look at some examples of using the above syntax –

## Example 1 – Check if array is 1d, 2d, or a higher dimensional array using `ndim`

property

Let’s create a 1d array, a 2d array, and a 3d array and see what we get with the `ndim`

property for each of these arrays.

import numpy as np # create a 1d array ar1 = np.array([1, 2, 3]) # create a 2d array ar2 = np.array([[1, 2, 3], [4, 5, 6]]) # create a 3d array of zeros with 2 rows, 2 columns, and 3 depth ar3 = np.zeros((2, 2, 3)) # get the dimensions of the arrays print(ar1.ndim) print(ar2.ndim) print(ar3.ndim)

Output:

1 2 3

We get the correct result. You can similarly use the `ndim`

property to determine the dimensionality of a numpy array for higher dimensional arrays as well.

**Data Science Programs By Skill Level**

**Introductory** ⭐

- Harvard University Data Science: Learn R Basics for Data Science
- Standford University Data Science: Introduction to Machine Learning
- UC Davis Data Science: Learn SQL Basics for Data Science
- IBM Data Science: Professional Certificate in Data Science
- IBM Data Analysis: Professional Certificate in Data Analytics
- Google Data Analysis: Professional Certificate in Data Analytics
- IBM Data Science: Professional Certificate in Python Data Science
- IBM Data Engineering Fundamentals: Python Basics for Data Science

**Intermediate ⭐⭐⭐**

- Harvard University Learning Python for Data Science: Introduction to Data Science with Python
- Harvard University Computer Science Courses: Using Python for Research
- IBM Python Data Science: Visualizing Data with Python
- DeepLearning.AI Data Science and Machine Learning: Deep Learning Specialization

**Advanced ⭐⭐⭐⭐⭐**

- UC San Diego Data Science: Python for Data Science
- UC San Diego Data Science: Probability and Statistics in Data Science using Python
- Google Data Analysis: Professional Certificate in Advanced Data Analytics
- MIT Statistics and Data Science: Machine Learning with Python - from Linear Models to Deep Learning
- MIT Statistics and Data Science: MicroMasters® Program in Statistics and Data Science

**🔎 Find Data Science Programs 👨💻 111,889 already enrolled**

Disclaimer: Data Science Parichay is reader supported. When you purchase a course through a link on this site, we may earn a small commission at no additional cost to you. Earned commissions help support this website and its team of writers.

## Example 2 – Using the `shape`

property

A numpy array’s `shape`

property also gives information about the dimensions in the array. Let’s take the same arrays used in the above example.

import numpy as np # create a 1d array ar1 = np.array([1, 2, 3]) # create a 2d array ar2 = np.array([[1, 2, 3], [4, 5, 6]]) # create a 3d array of zeros with 2 rows, 2 columns, and 3 depth ar3 = np.zeros((2, 2, 3)) # get the shape of the arrays print(ar1.shape) print(ar2.shape) print(ar3.shape)

Output:

(3,) (2, 3) (2, 2, 3)

The `shape`

returns a tuple with the number of values in each dimension of a numpy array. For `ar1`

we only get a single value as there’s only one dimension in the array. Thus, you can determine the dimensions by calculating the length of the `shape`

tuple.

# get the dimensions of the arrays print(len(ar1.shape)) print(len(ar2.shape)) print(len(ar3.shape))

Output:

1 2 3

We get the same results as above.

You might also be interested in –

**Subscribe to our newsletter for more informative guides and tutorials. ****We do not spam and you can opt out any time.**