pandas fix parse error year 0 is out of range

Fix Pandas – ParseError: year 0 is out of range 0000-00-00 Error

In this tutorial, we will look at how to fix the ParseError: year 0 is out of range 0000-00-00 error when using the pandas.to_datetime() function with the help of an example.

Why does this occur when using pandas.to_datetime()?

We use the pandas.to_datetime() function to convert a value or column to datetime type. The “pandas ParserError: year 0 is out of range: 0000-00-00” error occurs when trying to parse an invalid date using the pandas.to_datetime() function.

Let’s reproduce this error.

import pandas as pd

# create a dataframe
df = pd.DataFrame({
    "Name": ["John", "Akbar", "Steve", "Emma", "Rohan"],
    "Gender": ["Male", "Male", "Male", "Female", "Male"],
    "Date Of Birth": ["0000-00-00", "1997-12-35", "2002-01-13", "1890-01-24", "1971-12-25"]
})

# display the dataframe
df

Output:

The resulting dataframe with "Name", "Gender", and "Date Of Birth" columns

Here, we created a dataframe with the columns “Name”, “Gender”, and “Date Of Birth”. Notice that the “Date Of Birth” column contains some dates that are logically incorrect – “0000-00-00”, this date has a logically incorrect value for the month and the day, the date “1997-12-35” has an incorrect date value (a date in December can only be from 1 to 31).

Let’s check the data type of the columns in the above dataframe.

# get information about the dataframe's columns
df.info()

Output:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5 entries, 0 to 4
Data columns (total 3 columns):
 #   Column         Non-Null Count  Dtype 
---  ------         --------------  ----- 
 0   Name           5 non-null      object
 1   Gender         5 non-null      object
 2   Date Of Birth  5 non-null      object
dtypes: object(3)
memory usage: 248.0+ bytes

Now, let’s try to convert the “Date of Birth” column to datetime using the pandas.to_datetime() function.

📚 Data Science Programs By Skill Level

Introductory

Intermediate ⭐⭐⭐

Advanced ⭐⭐⭐⭐⭐

🔎 Find Data Science Programs 👨‍💻 111,889 already enrolled

Disclaimer: Data Science Parichay is reader supported. When you purchase a course through a link on this site, we may earn a small commission at no additional cost to you. Earned commissions help support this website and its team of writers.

# convert column to datetime
df["Date Of Birth"] = pd.to_datetime(df["Date Of Birth"])
# display the dataframe
df

Output:

---------------------------------------------------------------------------

ValueError                                Traceback (most recent call last)

File ~/miniforge3/envs/dsp/lib/python3.8/site-packages/dateutil/parser/_parser.py:649, in parser.parse(self, timestr, default, ignoretz, tzinfos, **kwargs)
    648 try:
--> 649     ret = self._build_naive(res, default)
    650 except ValueError as e:

File ~/miniforge3/envs/dsp/lib/python3.8/site-packages/dateutil/parser/_parser.py:1235, in parser._build_naive(self, res, default)
   1233         repl['day'] = monthrange(cyear, cmonth)[1]
-> 1235 naive = default.replace(**repl)
   1237 if res.weekday is not None and not res.day:

ValueError: year 0 is out of range

The above exception was the direct cause of the following exception:

ParserError                               Traceback (most recent call last)

File ~/miniforge3/envs/dsp/lib/python3.8/site-packages/pandas/_libs/tslib.pyx:534, in pandas._libs.tslib.array_to_datetime()

File ~/miniforge3/envs/dsp/lib/python3.8/site-packages/pandas/_libs/tslibs/parsing.pyx:257, in pandas._libs.tslibs.parsing.parse_datetime_string()

File ~/miniforge3/envs/dsp/lib/python3.8/site-packages/dateutil/parser/_parser.py:1368, in parse(timestr, parserinfo, **kwargs)
   1367 else:
-> 1368     return DEFAULTPARSER.parse(timestr, **kwargs)

File ~/miniforge3/envs/dsp/lib/python3.8/site-packages/dateutil/parser/_parser.py:651, in parser.parse(self, timestr, default, ignoretz, tzinfos, **kwargs)
    650 except ValueError as e:
--> 651     six.raise_from(ParserError(str(e) + ": %s", timestr), e)
    653 if not ignoretz:

File <string>:3, in raise_from(value, from_value)

ParserError: year 0 is out of range: 0000-00-00

During handling of the above exception, another exception occurred:

TypeError                                 Traceback (most recent call last)

File ~/miniforge3/envs/dsp/lib/python3.8/site-packages/pandas/_libs/tslib.pyx:545, in pandas._libs.tslib.array_to_datetime()

TypeError: invalid string coercion to datetime

During handling of the above exception, another exception occurred:

ValueError                                Traceback (most recent call last)

File ~/miniforge3/envs/dsp/lib/python3.8/site-packages/dateutil/parser/_parser.py:649, in parser.parse(self, timestr, default, ignoretz, tzinfos, **kwargs)
    648 try:
--> 649     ret = self._build_naive(res, default)
    650 except ValueError as e:

File ~/miniforge3/envs/dsp/lib/python3.8/site-packages/dateutil/parser/_parser.py:1235, in parser._build_naive(self, res, default)
   1233         repl['day'] = monthrange(cyear, cmonth)[1]
-> 1235 naive = default.replace(**repl)
   1237 if res.weekday is not None and not res.day:

ValueError: year 0 is out of range

The above exception was the direct cause of the following exception:

ParserError                               Traceback (most recent call last)

Cell In[55], line 2
      1 # convert column to datetime
----> 2 df["Date Of Birth"] = pd.to_datetime(df["Date Of Birth"])
      3 # display the dataframe
      4 df

...

ParserError: year 0 is out of range: 0000-00-00

We get the ParserError: year 0 is out of range: 0000-00-00

The PareseError here comes from the date “0000-00-00”. We cannot have a date with the year 0 in Pandas (although it’s logically correct year value).

What if we change the year to a valid value but keep the month and the day values as invalid for the date “0000-00-00” and then try to convert the column to datetime using the pandas.to_datetime() function?

# create a dataframe
df = pd.DataFrame({
    "Name": ["John", "Akbar", "Steve", "Emma", "Rohan"],
    "Gender": ["Male", "Male", "Male", "Female", "Male"],
    "Date Of Birth": ["0001-00-00", "1997-12-35", "2002-01-13", "1890-01-24", "1971-12-25"]
})

# convert column to datetime
df["Date Of Birth"] = pd.to_datetime(df["Date Of Birth"])
# display the dataframe
df

Output:

---------------------------------------------------------------------------

ValueError                                Traceback (most recent call last)

File ~/miniforge3/envs/dsp/lib/python3.8/site-packages/dateutil/parser/_parser.py:649, in parser.parse(self, timestr, default, ignoretz, tzinfos, **kwargs)
    648 try:
--> 649     ret = self._build_naive(res, default)
    650 except ValueError as e:

File ~/miniforge3/envs/dsp/lib/python3.8/site-packages/dateutil/parser/_parser.py:1235, in parser._build_naive(self, res, default)
   1233         repl['day'] = monthrange(cyear, cmonth)[1]
-> 1235 naive = default.replace(**repl)
   1237 if res.weekday is not None and not res.day:

ValueError: month must be in 1..12

The above exception was the direct cause of the following exception:

ParserError                               Traceback (most recent call last)

File ~/miniforge3/envs/dsp/lib/python3.8/site-packages/pandas/_libs/tslib.pyx:534, in pandas._libs.tslib.array_to_datetime()

File ~/miniforge3/envs/dsp/lib/python3.8/site-packages/pandas/_libs/tslibs/parsing.pyx:257, in pandas._libs.tslibs.parsing.parse_datetime_string()

File ~/miniforge3/envs/dsp/lib/python3.8/site-packages/dateutil/parser/_parser.py:1368, in parse(timestr, parserinfo, **kwargs)
   1367 else:
-> 1368     return DEFAULTPARSER.parse(timestr, **kwargs)

File ~/miniforge3/envs/dsp/lib/python3.8/site-packages/dateutil/parser/_parser.py:651, in parser.parse(self, timestr, default, ignoretz, tzinfos, **kwargs)
    650 except ValueError as e:
--> 651     six.raise_from(ParserError(str(e) + ": %s", timestr), e)
    653 if not ignoretz:

File <string>:3, in raise_from(value, from_value)

ParserError: month must be in 1..12: 0001-00-00

During handling of the above exception, another exception occurred:

TypeError                                 Traceback (most recent call last)

File ~/miniforge3/envs/dsp/lib/python3.8/site-packages/pandas/_libs/tslib.pyx:545, in pandas._libs.tslib.array_to_datetime()

TypeError: invalid string coercion to datetime

During handling of the above exception, another exception occurred:

ValueError                                Traceback (most recent call last)

File ~/miniforge3/envs/dsp/lib/python3.8/site-packages/dateutil/parser/_parser.py:649, in parser.parse(self, timestr, default, ignoretz, tzinfos, **kwargs)
    648 try:
--> 649     ret = self._build_naive(res, default)
    650 except ValueError as e:

File ~/miniforge3/envs/dsp/lib/python3.8/site-packages/dateutil/parser/_parser.py:1235, in parser._build_naive(self, res, default)
   1233         repl['day'] = monthrange(cyear, cmonth)[1]
-> 1235 naive = default.replace(**repl)
   1237 if res.weekday is not None and not res.day:

ValueError: month must be in 1..12

The above exception was the direct cause of the following exception:

ParserError                               Traceback (most recent call last)

Cell In[56], line 9
      2 df = pd.DataFrame({
      3     "Name": ["John", "Akbar", "Steve", "Emma", "Rohan"],
      4     "Gender": ["Male", "Male", "Male", "Female", "Male"],
      5     "Date Of Birth": ["0001-00-00", "1997-12-35", "2002-01-13", "1890-01-24", "1971-12-25"]
      6 })
      8 # convert column to datetime
----> 9 df["Date Of Birth"] = pd.to_datetime(df["Date Of Birth"])
     10 # display the dataframe
     11 df

...

ParserError: month must be in 1..12: 0001-00-00

We again get a ParseError but notice that the error message here is different, “month must be in 1..12: 0001-00-00”, we get an error because the month value is not in the range of 1 to 12 making it an invalid date.

We would get a similar error for the date “1997-12-35” which has an invalid date.

How to fix ParserError: year 0 is out of range: 0000-00-00 in the pandas.to_datetime() function?

One way to fix the above errors is to set the errors parameter to 'coerce' when using the pandas.to_datetime() function. This will convert invalid dates to NaT (Not a Time) values instead of raising an error.

Let’s recreate the original dataframe.

# create the original dataframe
df = pd.DataFrame({
    "Name": ["John", "Akbar", "Steve", "Emma", "Rohan"],
    "Gender": ["Male", "Male", "Male", "Female", "Male"],
    "Date Of Birth": ["0000-00-00", "1997-12-35", "2002-01-13", "1890-01-24", "1971-12-25"]
})

# display the dataframe
df

Output:

The resulting dataframe with "Name", "Gender", and "Date Of Birth" columns

Let’s now use the pandas.to_datetime() function with the errors='coerce' parameter.

# convert column to datetime
df["Date Of Birth"] = pd.to_datetime(df["Date Of Birth"], errors="coerce")
# display the dataframe
df

Output:

dataframe after converting the "Date Of Birth" column to datetime

Here, we didn’t get an error. Notice that all the dates in the dataframe that were invalid have been replaced with NaT (which represents “Not a Time”, it’s like the NaN equivalent for timestamp data).

Additionally note that the data type resulting from the pandas.to_datetime() function can only handle values inside a given range. If you try to parse date values outside this range, you’ll get a ParseError if you do not use the errors='coerce' argument (in which case it will replace such dates with NaT). See this tutorial for more details.

You might also be interested in –


Subscribe to our newsletter for more informative guides and tutorials.
We do not spam and you can opt out any time.


Author

  • Piyush Raj

    Piyush is a data professional passionate about using data to understand things better and make informed decisions. He has experience working as a Data Scientist in the consulting domain and holds an engineering degree from IIT Roorkee. His hobbies include watching cricket, reading, and working on side projects.

Scroll to Top